Original Article

Importance of Bovine Mastitis Associated Gene Expression Analysis – A Review

Year: 2021 | Month: February | Volume 11 | Issue 1

References (64)

1.Abebe, R., Hatiya, H., Abera, M., Megersa, B. and Asmare, K. 2016. Bovine mastitis: prevalence, risk factors and isolation of Staphylococcus aureus in dairy herds at Hawassa milk shed, South Ethiopia. BMC Vet. Res., 12: 270.

View at Google Scholar

2.Adiconis, X., Borges-Rivera, D., Satija, R., DeLuca, D.S., Busby, M.A., Berlin, A.M., Sivachenko, A., Thompson, D. A., Wysoker, A., Fennell, T., Gnirke, A., Pochet, N., Regev, A. and Levin, J.Z. 2013. Comparative analysis of RNA sequencing methods for degraded or low input samples. Nat. Meth., 10(7): 623-629.

View at Google Scholar

3.Algammal, A.M., Enany, M.E., El-Tarabili, R.M., Ghobashy, M. O. I. and Helmy, Y. A. 2020. Prevalence, antimicrobial resistance profiles, virulence and enterotoxins-determinant genes of MRSA isolated from subclinical bovine mastitis in Egypt. Pathog., 9(5): 362.

View at Google Scholar

4.Alnakip, M.E., Quintela-Baluja, M., Böhme, K., Fernández-No, I., Caamaño-Antelo, S., Calo-Mata, P. and Barros-Velázquez, J. 2014. The immunology of mammary gland of dairy ruminants between healthy and inflammatory conditions. J. Vet. Med., pp. 31.

View at Google Scholar

5.Arenas, J. 2012. The role of bacterial lipopolysaccharides as immune modulator in vaccine and drug development. Endocr. Metab. Immune Disord. Drug Target, 12: 221-235.

View at Google Scholar

6.Bangar, Y.C., Singh, B., Dohare, A.K. and Verma, M.D. 2015. A systematic review and meta-analysis of prevalence of subclinical mastitis in dairy cows in India. Trop. Anim. Health Prod., 47: 291–297.

View at Google Scholar

7.Banos, G., Bramis, G., Bush, S.J., Clark, E.L., McCulloch, M.E.B., Smith, J., Schulze, G., Arsenos, G., Hume, D.A. and Psifidi, A. 2017. The genomic architecture of mastitis resistance in dairy sheep. BMC Genomics, 18: 624.

View at Google Scholar

8.Bishop, S.C., Axford, R.F.E., Nicholas, F.W. and Owen, J. B. 2011. Breeding for disease resistance in farm animals. 3rd Ed., CABI publishing, Wallingford, U.K., pp. 3-32.

View at Google Scholar

9.Bonnefont, C.M.D., Toufeer, M., Caubet, C., Foulon, E., Tasca, C., Aurel, M.R., Bergonier, D., Boullier, S., Robert-Granié, C., Foucras, G. and Rupp, R. 2011. Transcriptomic analysis of milk somatic cells in mastitis resistant and susceptible sheep upon challenge with Staphylococcus epidermidis and Staphylococcus aureus. BMC Genomics, 12: 208.

View at Google Scholar

10.Bougarn, S., Cunha, P., Gilbert, F. B., Harmache, A., Foucras, A. and Rainard, P. 2011. Staphylococcal associated molecular patterns enhance expression of immune defense genes induced by IL-17 in mammary epithelial cells. Cytokine, 56(3): 749–759.

View at Google Scholar

11.Buitenhuis, B., Røntved, C.M., Edwards, S.M., Ingvartsen, K.L. and Sorensen, P. 2011. In depth analysis of genes and pathways of the mammary gland involved in the pathogenesis of bovine Escherichia coli- mastitis. BMC Genomics, 12: 130.

View at Google Scholar

12.Cervinkova, D., Vlkova, H., Borodacova, I., Makovcova, J., Babak, V., Lorencova, A., Vrtkova, I., Marosevic, D. and Jaglic, Z. 2013. Prevalence of mastitis pathogens in milk from clinically healthy cows. Vet. Med., 58(11): 567–575.

View at Google Scholar

13.Chandrasekaran, D., Venkatesan, P. and Tirumurugaan, K.G. 2014. Pattern of antibiotic resistant mastitis in dairy cows. Vet. World, 7(6): 389–394.

View at Google Scholar

14.Chen, Q., He, G., Zhang, W., Xu, T., Qi, H., Li, J., Zhang, Y. and Gao, M. Q. 2016. Stromal fibroblasts derived from mammary gland of bovine with mastitis display inflammation-specific changes. Sci. Rep., 6: 27462.

View at Google Scholar

15.Costa-Silva, J., Domingues, D. and Lopes, F.M. 2017. RNA-Seq differential expression analysis: an extended review and a software tool. PLoS One, 12: e0190152.

View at Google Scholar

16.Fang, L., Sahana, G., Su, G., Yu, Y., Zhang, S., Lund, M.S. and Sørensen, P. 2017. Integrating sequence based GWAS and RNA-Seq provides novel insights into the genetic basis of mastitis and milk production in dairy cattle. Sci. Rep., 7: 45560.

View at Google Scholar

17.Farkas, M.H., Au, E.D., Sousa, M.E. and Pierce, E.A. 2015. RNA-Seq: improving our understanding of retinal biology and disease. Cold Spring Harb. Perspect. Med., 5: a017152.

View at Google Scholar

18.FAO, 2014. Food and agriculture organization of the united nations, animal production and health: impact of mastitis in small scale dairy production systems, FAO, Rome Italy.

View at Google Scholar

19.FAO, 2020. Food and agriculture organization of the united nations, dairy market review: overview of global dairy market developments, FAO, Rome Italy.

View at Google Scholar

20.Gilbert, F.B., Cunha, P., Jensen, K., Glass, E.J., Foucras, G., Robert-Granié, C., Rupp, R. and Rainard, P. 2013. Differential response of bovine mammary epithelial cells to Staphylococcus aureus or Escherichia coli agonists of the innate immune system. Vet. Res., 44(1): 40.

View at Google Scholar

21.Goddard, M., Kemper, K., MacLeod, I., Chamberlain, A. and Hayes, B. 2016. Genetics of complex traits: prediction of phenotype, identification of causal polymorphisms and genetic architecture. Proc. Biol. Sci., 27: 283.

View at Google Scholar

22.Han, Z., Fan, Y., Yang, Z., Loor, J. J. and Yang, Y. 2020. Mammary transcriptome profile during peak and late lactation reveals differentially expression genes related to inflammation and immunity in chinese holstein. Anim., 10: 510.

View at Google Scholar

23.Han, Y., Gao, S., Muegge, K., Zhang, W. and Zhou, B. 2015. Advanced applications of RNA sequencing and challenges. Bioinform. Biol. Insights., 9: 29–46.

View at Google Scholar

24.Hrdlickova, R., Toloue, M. and Tian, B. 2016. RNA-Seq methods for transcriptome analysis. Wiley Interdiscip. Rev. RNA, 8: e1364.

View at Google Scholar

25.Jensen, K., Günther, J., Talbot, R., Petzl, W., Zerbe, H., Schuberth, H.J., Seyfert, H.M. and Glass, E.J. 2013. Escherichia coli- and Staphylococcus aureus-induced mastitis differentially modulate transcriptional responses in neighbouring uninfected bovine mammary gland quarters. BMC Genomics, 14: 36.

View at Google Scholar

26.Ju, Z., Jiang, Q., Wang, J., Wang, X., Yang, C., Sun, Y., Zhang, Y., Wang, C., Gao, Y., Wei, X., Hou, M. and Huang, J. 2020. Genome-wide methylation and transcriptome of blood neutrophils reveal the roles of DNA methylation in affecting transcription of protein-coding genes and miRNAs in E. coli- infected mastitis cows. BMC Genomics, 21: 102.

View at Google Scholar

27.Karthikeyan, A., Radhika, G., Aravindhakshan, T.V. and Anilkumar, K. 2016. Expression profiling of innate immune genes in milk somatic cells during subclinical mastitis in crossbred dairy cows. Anim. Biotechnol., 27(4): 303–309.

View at Google Scholar

28.Kemper, K. E. and Goddard, M. E. 2012. Understanding and predicting complex traits: knowledge from cattle. Hum. Mol. Genet., 21: 45–51.

View at Google Scholar

29.Kiku, Y., Nagasawa, Y., Tanabe, F., Sugawara, K., Watababe, A., Hata, E., Ozawa, T., Nakajima, K., Arai, T. and Hayashi, T. 2016. The cell wall component lipoteichoic acid of Staphylococcus aureus induces chemokine gene expression in bovine mammary epithelial cells. J. Vet. Med. Sci., 78(9): 1505-1510.

View at Google Scholar

30.Kirsanova, E., Boysen, P., Johansen, G.M., Heringstad, B., Lewandowska-Sabat, A. and Olsaker, I. 2020. Expression analysis of candidate genes for chronic subclinical mastitis in Norwegian Red cattle. J. Dairy Sci., 103(10): 9142-9149.

View at Google Scholar

31.Kosciuczuk, E. M., Lisowski, P., Jarczak, J., Majewska, A., Rzewuska, M., Zwierzchowski, L. and Bagnicka, E. 2017. Transcriptome profiling of Staphylococci infected cow mammary gland parenchyma. BMC Vet. Res., 13:161.

View at Google Scholar

32.Kumar, N., Manimaran, A., Kumaresan, A., Jeyakumar, S., Sreela, L., Mooventhan, P. and Sivaram, M. 2017. Mastitis effects on reproductive performance in dairy cattle: a review. Trop. Anim. Health. Prod., 49: 663–673.

View at Google Scholar

33.Lai, Y. C., Lai, Y. T., Rahman, M. M., Chen, H. W., Husna, A. A., Fujikawa, T., Ando, T., Kitahara, G., Koiwa, M., Kubota, C. and Miura, N. 2020. Bovine milk transcriptome analysis reveals microRNAs and RNU2 involved in mastitis. The FEBS J., 287: 1899–1918.

View at Google Scholar

34.Li, S., Tighe, S. W., Nicolet, C.M., Grove, D., Levy, S., Farmerie, W., Viale, A., Wright, C., Schweitzer, P. A., Gao, Y., Kim, D., Boland, J., Hicks, B., Kim, R., Chhangawala, S., Jafari, N., Raghavachari, N., Gandara, J., Garcia-Reyero, N., Hendrickson, C., Roberson, D., Rosenfeld, J., Smith, T., Underwood, J.G., Wang, M., Zumbo, P., Baldwin, D.A., Grills, G.S. and Mason, C.E. 2014. Multi-platform assessment of transcriptome profiling using RNA-seq in the ABRF next- generation sequencing study. Nat. Biotechnol., 32: 915–925.

View at Google Scholar

35.Lippolis, J.D., Holman, D.B., Brunelle, B. W., Thacker, T.C., Bearson, B.L., Reinhardt, T.A., Sacco, R. E. and Casey, T.A. 2018. Genomic and transcriptomic analysis of Escherichia coli strains associated with persistent and transient bovine mastitis and the role of colanic acid. Infect. Immun., 86: e00566-17.

View at Google Scholar

36.Luoreng, Z.M., Wang, X. P., Mei, C.G. and Zan, L.S. 2018. Expression profiling of peripheral blood miRNA using RNAseq technology in dairy cows with Escherichia coli- induced mastitis. Sci. Rep., 8: 12693.

View at Google Scholar

37.Mata, F. 2013. Mastitis vaccination in dairy cattle: a meta- analysis of field case-control trials. Rev. Port. Ciênc. Vet., 108: 17–22.

View at Google Scholar

38.Moosavi, M., Mirzaei, A., Ghavami, M. and Tamadon, A. 2014. Relationship between season, lactation number and incidence of clinical mastitis in different stages of lactation in a holstein dairy farm. Vet. Res. Forum, 5(1): 13–19.

View at Google Scholar

39.Murphy, M. P., Neidziela, D.A., Leonard, F.C. and Keane, O.M. 2019. The in vitro host cell immune response to bovine- adapted Staphylococcus aureus varies according to bacterial lineage. Sci. Rep., 9: 6134.

View at Google Scholar

40.Nookaew, I., Papini, M., Pornputtapong, N., Scalcinati, G., Fagerberg, L., Uhlen, M. and Nielsen J.A. 2012. Comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross comparison with microarrays: a case study in Saccharomyces cerevisiae. Nucleic Acids Res., 40: 10084–10097.

View at Google Scholar

41.Ozsolak, F. and Milos, P.M. 2011. RNA sequencing: advances, challenges and opportunities. Nat. Rev. Genet., 12(2): 87–98.

View at Google Scholar

42.Pal, M. 2018. Mastitis: A major production disease of dairy animals. Agr. World, 4: 46-51.

View at Google Scholar

43.Pal, M., Regasa, A. and Gizaw, F. 2019. Etiology, pathogenesis, risk factors, diagnosis and management of bovine mastitis: A comprehensive review. Int. J. Anim. Vet. Sci., 6: 40-55.

View at Google Scholar

44.Panigrahi, M., Sharma, A. and Bhushan, B. 2014. Molecular characterization and expression profile of partial TLR4 gene in association to mastitis in crossbred cattle. Anim. Biotechnol., 25(3): 188–199.

View at Google Scholar

45.Prince, L.R., Whyte, M.K., Sabroe, I. and Parker, L. C. 2011. The role of TLRs in neutrophil activation. Curr. Opin. Pharmacol., 11(4): 397–403.

View at Google Scholar

46.Rainard, P., Foucras, G., Boichard, D. and Rupp, R. 2018. Invited review: Low milk somatic cell count and susceptibility to mastitis. J. Dairy Sci., 101(8): 6703–6714.

View at Google Scholar

47.Reshi, A. A., Husain, I., Bhat, S. A., Rehman, M. U., Razak, R., Bilal, S. and Mir, M. R. 2015. Bovine mastitis as an evolving disease and its impact on the dairy industry. Int. J. Cur. Res. Rev. 7(5): 48-55.

View at Google Scholar

48.Schukken, Y.H., Günther, J., Fitzpatrick, J., Fontaine, M. C., Goetze, L., Holst, O., Leigh, J., Petzl, W., Schuberth, H. J., Sipka, A., Smith, D.G.E., Quesnell, R., Watts, J., Yancey, R., Zerbe, H., Gurjar, A., Zadoks, R.N. and Seyfert, H.M. 2011. Host-response patterns of intramammary infections in dairy cows. Vet. Immunol. Immunopathol., 144(3-4): 270– 289.

View at Google Scholar

49.Sordillo, L.M. 2018. Mammary gland immunobiology and resistance to mastitis. Vet. Clin. Food Anim., 34(3): 507–523.

View at Google Scholar

50.Stevens, M.G.H., Peelman, L.J., Spiegeleer, B. De., Pezeshki, A., Van De Walle, G.R., Duchateau, L. and Burvenich, C. 2011. Differential gene expression of the toll-like receptor-4 cascade and neutrophil function in early- and mid-lactating dairy cows. J. Dairy Sci., 94(3) :1277–1288.

View at Google Scholar

51.Sulabh, S. 2016. Gene expression profiling of immune related genes by in vitro challenge of PBMCS with E. coli and S. aureus agonists causing mastitis. Ph. D. thesis. Submitted to deemed university ICAR-Indian veterinary research institute Izatnagar - 243 122 (U.P.), India.

View at Google Scholar

52.Tanamati, F., Stafuzza, N.B., Gimenez, D. F. J., Stella, A.A.S., Santos, D.J.A., Ferro, M. I.T., Albuquerque, L.G., Gasparino, E. and Tonhati, H. 2019. Differential expression of immune response genes associated with subclinical mastitis in dairy buffaloes. Anim., 13(8): 1651-1657.

View at Google Scholar

53.Thompson-Crispi, K., Atalla, H., Miglior, F. and Mallard, B.A. 2014. Bovine mastitis: frontiers in immunogenetics. Front Immunol., 5: 493.

View at Google Scholar

54.Usman, T. Wang, Y., Liu, C., He, Y., Wang, X., Dong, Y., Wu, H., Liu, A. and Yu, Y. 2017. Novel SNPs in IL-17F and IL-17A genes associated with somatic cell count in Chinese Holstein and Inner-Mongolia Sanhe cattle. J. Anim. Sci. Biotechnol., 8: 5.

View at Google Scholar

55.Van Dijk, E. L., Jaszczyszyn, Y. and Thermes, C. 2014. Library preparation methods for next-generation sequencing: tone down the bias. Exp. Cell Res., 322(1): 12-20.

View at Google Scholar

56.Wang, D., Liu, L., Augustino, S. M. A., Duan, T., Hall, T.J., MacHugh, D.E., Dou, J., Zhang, Y., Wang, Y. and Yu, Y. 2020. Identification of novel molecular markers of mastitis caused by Staphylococcus aureus using gene expression profiling in two consecutive generations of Chinese Holstein dairy cattle. J. Anim. Sci. Biotechnol., 11: 98.

View at Google Scholar

57.Wellnitz, O., Arnold, E.T. and Bruckmaier, R.M. 2011. Lipopolysaccharide and lipoteichoic acid induce different immune responses in the bovine mammary gland. J. Dairy Sci. 94(11): 5405–5412.

View at Google Scholar

58.Wellnitz, O. and Bruckmaier, R.M. 2012. The innate immune response of the bovine mammary gland to bacterial infection. Vet. J., 192(2): 148–152.

View at Google Scholar

59.Wickramasinghe, S., Rincon, G., Islas-Trejo, A. and Medrano, J. F. 2012. Transcriptional profiling of bovine milk using RNA sequencing. BMC Genomics, 13: 45.

View at Google Scholar

60.Wu, Y., Chen, J., Sun, Y., Dong, X., Wang, Z., Chen, J. and Dong, G. 2020. PGN and LTA from Staphylococcus aureus induced inflammation and decreased lactation through regulating DNA methylation and histone H3 acetylation in bovine mammary epithelial cells. Toxins, 12(4): 238.

View at Google Scholar

61.Xu, T., Deng, R., Li, X., Zhang, Y. and Gao, M.Q. 2019. RNA- Seq analysis of different inflammatory reactions induced by lipopolysaccharide and lipoteichoic acid in bovine mammary epithelial cells. Microb. Pathog., 130: 169-177.

View at Google Scholar

62.Yan, Z., Huang, H., Freebern, E., Santos, D.J.A., Dai, D., Si, J., Ma, C., Cao, J., Guo, G., Liu, G.E., Ma, L., Fang, L. and Zhang, Y. 2020. Integrating RNA-Seq with GWAS reveals novel insights into the molecular mechanism underpinning ketosis in cattle. BMC Genomics, 21: 489.

View at Google Scholar

63.Zhang, W., Li, X., Xu, T., Mengru, M., Zhang, Y. and Gao, M. Q. 2016. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis. Exp. Cell Res., 349(1): 45-52.

View at Google Scholar

64.Zhao, S., Zhang, Y., Gordon, W., Quan, J., Xi, H., Du, S., David Von, S. and Zhang, B. 2015. Comparison of stranded and non- stranded RNA-Seq transcriptome profiling and investigation of gene overlap. BMC Genomics, 16: 675.

View at Google Scholar

@International Journal of Social Sciences(IJSS)| Published by AESSRA

21546741 - Visitors since February 20, 2019